新萄京计算机网络

 新萄京计算机网络     |      2020-01-26

我们上次报道过,微软官方上线 Python 教程文档。最近微软针对 Python 初学者,推出了一套免费的教程视频。

最全的机器学习资源整理(持续更新)

文章首发:
欢迎留言评论,转载请注明出处。

这套视频名为 Python for Beginners,该在线教学视频由微软高级项目经理 Christopher Harrison、以及微软 AI Gaming 的商业开发经理 Susan Ibach 共同讲解,在课程中加入了他们对 Python 的见解,一共有 44 个视频。官方对该系列视频的描述是快速和简洁的,这套视频并不是对 Python 的深入研究,而是为 Python 初学者提供的学习材料,以鼓励学习者开始具体研究领域。

视频资源

图片 1

吴恩达创立的深度学习学院

链接:
介绍:需要付费的,在线学习,讲解较为基础的机器学习及神经网络知识。学完后通过考试还能拿个证书。不过要注意,当前coursera是要收费的,但是新用户注册7天内是免费的,所以注册后赶紧学完考试拿证,超期后需要支付320元左右才能继续学习。

根据官方介绍,该系列教程并不会涵盖所有 Python 知识,提供的是关于 Python 编程的基础内容。而具体来说,该教学视频系列循序渐进,先是介绍 Python,开发工具 Visual Studio Code 的配置,然后就是主要语法语句概念讲解,再配合示例演示,例如介绍 print 概念和演示 Hello World。

人工智能入门麻省理工学院公开课:人工智能

链接:
介绍:本课程学习人工智能,以授课形式讲述什么人工智能,人工智能的重要性和其未来,包括如何进行博弈、图像识别、以及机器学习方面的内容

图片 2

吴恩达的《深度学习》课程

链接:
介绍:吴恩达博士是Google Brain项目的发起人和领导者,斯坦福大学的计算机科学教授,Coursera的联合创始人和联合主席。他还曾任百度的副总裁和首席科学家,在这里,他领导了约1300人的人工智能团队,并负责百度的国际人工智能战略和基础建设。由 deeplearning.ai 出品,网易引进的正版授权中文版深度学习工程师微专业课程,让你在了解丰富的人工智能应用案例的同时,学会在实践中搭建出最先进的神经网络模型,训练出属于你自己的 AI。

Python 最近几年来非常流行,在各大语言排行榜上都名列前茅,例如它在 IEEE Spectrum 年度编程语言排行榜上就三年连冠,在最近的 TIOBE 9 月排行位居第三。大多数界内人士认为,在未来几年,Java 和 C 在搜索引擎的相关搜索方面将面临挑战,受到 Python 影响。Python之所以如此流行,原因包括简单易用、通用性(符合各种开发需求)、强大的社区、有很多大企业赞助、能够用于机器学习和人工智能等等,它在许多机器学习课程中被用作主要语言有关,这众多因素让它越来越受关注。

李飞飞:如何教计算机理解图片

链接:
介绍:小孩看到图时,能立刻识别出图上的简单元素,例如猫、书、椅子。现如今,计算机也拥有足够智慧做到这一点了。接下来呢?斯坦福大学的计算机视觉专家李飞飞将描绘当今人工智能科技的前沿领域。她和她的团队建立起了一个含有1500万张照片的数据库,并通过该数据库来教计算机理解图片。

(文/开源中国)    

斯坦福大学公开课 :机器学习课程

链接:
介绍:人工智能的发展到已经进入了一个瓶颈期。近年来各个研究方向都没有太大的突破。真正意义上人工智能的实现目前还没有任何曙光。但是,机器学习无疑是最有希望实现这个目标的方向之一。斯坦福大学的“Stanford Engineering Everywhere ”免费提供学校里最受欢迎的工科课程,给全世界的学生和教育工作者。得益于这个项目,我们有机会和全世界站在同一个数量级的知识起跑线上。

西安电子科技大学人工智能视频

链接:
介绍:《人工智能原理与方法》较全面地介绍了人工智能的基本理论、方法及其应用技术。全书共12章,可分为三大部分:第一部分包括第1章至第6章,论述了人工智能的三大技术,即知识表示、推理及搜索,重点讨论了不确定性的表示及处理技术;第二部分包括第7章至第10章,着重讨论了专家系统、机器学习、模式识别及智能决策支持系统等研究领域的有关概念及系统构成技术;第三部分包括第11章和第12章,分别讨论了神经网络和智能计算机的概念、模型、研究现状及展望等。

吉林大学人工智能表视频

链接:
介绍:吉林大学人工智能主要阐述人工智能问题求解方法的一般性原理和基本思想。主要内容有:一般的搜索问题,括盲目搜索和启发式搜索等;与或图搜索,括AO*算法和博弈树搜索等;谓词逻辑以及基于归结的定理证明方法;知识表示,括产生式方法、语义网络、框架等;不确定性推理方法,括贝叶斯方法、证据理论和确定性方法等;机器学习,括实例学习、解释学习、决策树学习和神经网络等;高级搜索,括局部搜索方法、模拟退火方法和遗传算法等。

吴恩达“机器学习”公开课

链接:
介绍:这门课最大的特点,是它侧重于概念理解而不是数学。数学推导过程基本被略过,重点放在让初学者理解这背后的思路。另外,它还十分重视联系实际和经验总结:1. 课程中吴恩达老师列举了许多算法实际应用的例子 2. 他提到当年他们入门 AI 时面临的许多问题,以及处理这些难题的经验。这门课对数学、统计、IT 基础薄弱的童鞋十分友好。

加州理工 “从数据中学习”

链接:
介绍:这同样是一门机器学习的入门课,但并不简单。该课程强调数据,是因为机器学习与各领域的大数据处理应用(比如金融、医疗)联系十分紧密。这门课内容涵盖基础理论、算法和应用,平衡了理论与实践,既覆盖数学统计,也包含启发式的概念理解。

Tom Mitchell 机器学习课程

链接:
介绍:门课是学界人士的最爱,是入门课程之中较全面、高阶的一门。课时为 15 周,远超大多数机器学习慕课。其覆盖的话题非常广,按先后次序包括:代数和概率论,机器学习的基础工具,概率图模型,AI,神经网络,主动学习,增强学习。课程内容和练习十分简洁明白,概念解释清楚到位。

谷歌人工智能入门


介绍:两位主讲者,Peter Norvig 和 Sebastian Thrun,一个是谷歌研究总监,一个是斯坦福著名机器学习教授,均是与吴恩达、Yann Lecun 同级别的顶级 AI 专家。需要强调的是,该课程倾向于介绍 AI 的实际应用。课程练习广受好评。

UBC本科生的机器学习课程

链接:
介绍:这门课很适合作为吴恩达老师“机器学习”的进阶课程,因为:1. “机器学习”省略掉的一些概念,可以在这门课中找到。2. “机器学习”课 不重视数学,而数学是这门课的重点内
容。Nando de Freitas 对诸如概率论、log likelihood 等基础数学原理做了很好的讲解,并以此为基础介绍更高级的数学、统计概念。对于机器学习新手,完全略过数学细节是很危险的,这门课会帮助你打下基础。

Yann Lecun深度学习公开课

链接:
介绍:作为人工智能领域大牛和 Facebook AI 实验室(FAIR)的负责人,Yann Lecun 身处业内机器学习研究的最前沿。他曾经公开表示,现有的一些机器学习公开课内容已经有些过时。通过 Yann Lecun 的课程能了解到近几年深度学习研究的最新进展。该系列可作为探索深度学习的进阶课程。

Geoffrey Hinton深度学习课程

链接:
介绍:(你会在这门课)学习人工神经网络以及它们如何应用于机器学习,比方说语音、物体识别,图像分割(image segmentation),建模语言、人体运动等等。我们同时强调基础算法,以及对它们成功应用所需的实用技巧 。”

哥伦比亚大学的机器学习公开课

链接:
介绍:这门课中,学习者会了解到机器学习的算法、模型和方法,以及它们在现实生活中的应用。